Tetrahedron Letters 41 (2000) 4085-4088

Kinetic resolution of 1-acenaphthenol and 1-acetoxynaphthene through lipase-catalyzed acylation and hydrolysis

Louisa Aribi-Zouioueche a and Jean-Claude Fiaud b,*

^aDepartment of Organic Chemistry, University of Annaba, B.P. 12, 23000 Annaba, Algeria ^bInstitut de Chimie Moléculaire d'Orsay, Université Paris-Sud, F-91405 Orsay, France

Received 7 March 2000; accepted 31 March 2000

Abstract

Acenaphthenyl acetate and acenaphthenol are resolved through *Pseudomonas fluorescens* lipase (PFL)-catalyzed hydrolysis and acylation, respectively. By contrast, the structurally related 1-(1-naphthyl)ethyl acetate and 1-(1-naphthyl)ethanol are inactive under the same reaction conditions. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: kinetic resolution; enzyme; catalysis; enantioselective; acylation; hydrolysis.

Enantiomerically pure 1-arylethanols and their derivatives are compounds of interest in transition metal-catalyzed organic synthesis. Noteworthy, 1-(1-naphthyl)ethyl acetate and carbonate have been used as chiral, optically active substrates in palladium-catalyzed substitutions. In this context, we have been interested in the preparation of optically active 1-acenaphthenol to investigate the behaviour of its esters in Pd-catalyzed substitutions. (-)-1-Acenaphthenol 1, a benzylic alcohol which is an early metabolite of oxidation of acenaphthene, has already been obtained by fractional crystallization of the diastereomeric camphanic esters and its configuration shown to be R by X-ray diffraction.

Since the first assays for lipase-catalyzed acylation of 1 were disappointing³ we turned to investigations on the resolution of (\pm) -1 by enzymatic hydrolysis of the corresponding acetate and methyl carbonate (Scheme 1). Two lipases were examined: a microbial lipase from *Pseudomonas fluorescens* (PFL) and

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00544-X

^{*} Corresponding author. E-mail: fiaud@icmo.u-psud.fr (J.-C. Fiaud)

a mammalian, the rabbit gastric lipase (RGL),⁴ since this latter showed good enantioselectivities in the kinetic resolution of secondary benzylic alcohols through acylation.³ Moreover, we wished to compare both the activity and the selectivity displayed by these lipases in the kinetic resolution of 4 and 5, which may be regarded as the flexible counterparts of rigid 1 and 2. The results for lipase-catalyzed hydrolyses of 2, 3 and 5 are shown in Table 1.

Table 1
Lipase-catalyzed hydrolyses of **2**, **3** and **5**

Substratea	Lipase	Reaction	Conversion ^b	Recovered Ester	Alcohol	Ep
	(mg)	time (h)	(%)	ee(%) (% yield) ^c	ee(%)d (% yield)c	
(±)- 3	PFL (50)	90	41	62 ^{e)} (17)	89 (13)	30
(±)- 3	RGL (80)	120	42	8 ^{e)} (22)	10 (17)	1.3
(±)- 2	PFL (50)	90	50	99 ^{f)} (31)	99 (35)	>800
(±)- 2	RGL (100)	24	61	81 ^{f)} (32)	51 (40)	8
(±)- 5	PFL (50)	120	< 5	-	-	-
(±)- 5	RGL (50)	120	< 5	-	-	_

⁸ 2 mmol, 30°C. ⁶ c and E were calculated from ee_{substrate} and ee_{product} using standard equations [5]; ^c yields given for isolated products after silica gel chromatography (hexane / ethyl acetate 80 / 20). ^d) measured by chiral hplc on Chiralcel[®] OD-H column, hexane/isopropanol 97/3, flow 0.5 mL.min⁻¹. ^c) measured by chiral hplc on Regis[®] (*S,S*)-WHELK-01 column, hexane/isopropanol 9/1, flow 0.5 mL.min⁻¹. ^f) measured by chiral hplc on Chiralcel[®] OD-H column, hexane/isopropanol 9/1, flow 0.5 mL.min⁻¹.

RGL was inactive for hydrolysis of 5, and moderately selective for hydrolysis of 2. By contrast, although inactive for hydrolysis of 5, PFL displayed both good activity and enantioselectivity (E>800) in hydrolysis of 2.

An analogous investigation was carried out for acylation of 1 and 4. The results are shown in Table 2.

Substrate ^{a)}	Lipase Reacti		Conversion ^b Recovered alcohol		Ester	Eb
*	(mg)	time (h)	(%)	ee(%)c (% yield)d	ee(%)e (% yield)d	
(±)- 1	PFL (50)	24	50	97 (34)	94 (41)	130
(±)- 1	RGL (80)	24	90	77 (22)	8	2.2
(±)- 4	PFL (50)	90	_ f)	4-	-	-
(±)- 4	RGL (100)	120	20	19	78	11

^a 2 mmol, 30°C; 3 mmol isopropenyl acctetate. ^b c and E were calculated from ee_{substrate} and ee_{product} using standard equations⁵; ^c measured by chiral hplc on Chiralcel[®] OD-H column, hexanc/isopropanol 97/3, flow 0.5 mL. min ⁻¹. ^d yields given for isolated products after silica gel chromatography. ^e measured by chiral hplc on Chiralcel[®] OD-H column, hexane/isopropanol 9/1, flow 0.5 mL. min ⁻¹. ^f very low conversion: less than 1 % ester produced.

Here again, both $\mathbf{1}$ and $\mathbf{4}$ were acylated with isopropenyl acetate in the presence of RGL with poor (E=1.8) to moderate (E=14) selectivity. The same trend as for hydrolysis was observed in PFL-catalyzed acylation: PFL was found to be inactive for acylation of $\mathbf{4}$, but both active and enantioselective in acylation of $\mathbf{1}$.

The chiroptical properties of **1** and **2** are reported in Table 3.

 $\label{thm:continuous} Table\ 3$ Chiroptical properties of ${\bf 1}$ and ${\bf 2},$ obtained through acylation and hydrolysis, respectively a

Compound	$[\alpha]_D^{20}$	c (g.100mL ⁻¹)	% ee ^b	Compound	$[\alpha]_D^{20}$	c (g.100mL ⁻¹)	% ee ^b
(S)- 1	+ 1.34	2.6	97	(R)- 1	- 1.38	2.1	99
(<i>R</i>)-2	+ 81.6	3.4	94	(S)- 2	- 85.2	2.2	99

 $^{^{\}text{a}}$ optical rotations measured with a Perkin Elmer 241 polarimeter, in CHCl $_{\!3}$ solvent.

RGL was neither satisfactory in acylation of 1 and 4, nor in hydrolysis of 2, 3 and 5. PFL was inactive in acylation of 4 and hydrolysis of 5, but showed excellent enantiocomplementarity, since it was both active and enantioselective in acylation of 1 and hydrolysis of the corresponding esters 2 and 3. Both enantiomers of 1 and 2 were thus obtained directly with the same enzyme.

The high E value recorded for PFL-catalyzed hydrolysis of $\mathbf{2}$ indicates that the spatial structure of the R-configurated rigid substrate fits nicely in the active site of the enzyme for acylation. The same trend holds for acylation of $\mathbf{1}$, where (R)- $\mathbf{1}$ should have the ideal shape for nucleophilic attack of the acylenzyme.

Rigid 1 and 2 can be regarded as resembling particular conformations of 4 and 5, respectively. Since 4 and 5 are inactive, we may conclude that the active conformation of 4 and 5 for enzyme-mediated acylation and hydrolysis cannot be reached, or is too poorly populated. This sounds reasonable since in such a conformation, the methyl group of 4 and 5 would suffer severe steric interactions with the *peri*-H atom attached to the C-8 naphthalenic carbon atom. Such results could help in designing the shape of the active site of the enzyme and the steric and spatial requirements for activity and selectivity in PFL-catalyzed acylations and hydrolysis of secondary alcohols. Work is in progress along this line.

^b see Tables 1 and 2.

In summary, acenaphthenyl acetate and acenaphthenol are resolved and obtained in >97% *ee* through *Pseudomonas fluorescens* lipase (PFL)-catalyzed hydrolysis and acylation, respectively. (*R*)-Acenaphtol has the required structure for a nice fit with the enzyme active site. By contrast, the structurally related 1-(1-naphthyl)ethyl acetate and 1-(1-naphthyl)ethanol are inactive under the same reaction conditions, indicating that the active conformation of the (*R*)-enantiomer is of too high an energy.

Acknowledgements

This work was financially suported by CMEP (AP-95 MDU 327). The Algerian Ministery of Education and Scientific Research is gratefully thanked.

References

- 1. Legros, J.-Y.; Toffano, M.; Fiaud, J.-C. Tetrahedron 1995, 51, 3253-3246.
- 2. Hu, Y.; Ziffer, H.; Silverton, J. V. Can. J. Chem. 1989, 67, 60-62.
- 3. Legros, J.-Y.; Toffano, M.; Drayton, S. K.; Rivard, M; Fiaud, J.-C. Tetrahedron Lett. 1997, 38, 1915–1918.
- 4. Moreau, H.; Gargoni, Y.; Lecat, D.; Junien, J. L.; Verger, R. Biochem. Biophys. Acta 1988, 960, 286–293.
- Chen, C. S.; Wu, C. H.; Gidaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1987, 106, 2182–2187. Kagan, H.; Fiaud, J.-C. In Topics in Stereochemistry; Eliel, E. L.; Wilen, S. H., Eds.; Interscience, 1988; Vol. 106, pp. 249–331.